To find the area of a triangle , you can use the most common formula:
Area of a Triangle Formula
Area=12×base×height\text{Area}=\frac{1}{2}\times \text{base}\times \text{height}Area=21×base×height
Steps:
- Identify the base of the triangle (any one side).
- Measure the height (the perpendicular distance from the base to the opposite vertex).
- Plug these values into the formula and calculate.
Example:
If the base is 6 units and the height is 4 units:
Area=12×6×4=12 square units\text{Area}=\frac{1}{2}\times 6\times 4=12\text{ square units}Area=21×6×4=12 square units
Other methods:
- Using Heron's formula (when you know all three sides):
s=a+b+c2s=\frac{a+b+c}{2}s=2a+b+c
Area=s(s−a)(s−b)(s−c)\text{Area}=\sqrt{s(s-a)(s-b)(s-c)}Area=s(s−a)(s−b)(s−c)
where a,b,ca,b,ca,b,c are the side lengths and sss is the semi-perimeter.
- Using coordinates (if you know the vertices (x1,y1),(x2,y2),(x3,y3)(x_1,y_1),(x_2,y_2),(x_3,y_3)(x1,y1),(x2,y2),(x3,y3)):
Area=12∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣\text{Area}=\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|Area=21∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣
If you want, I can help you with a specific example!