how to do fractions

how to do fractions

5 hours ago 3
Nature

Sure! Here's a simple guide on how to work with fractions :

What is a Fraction?

A fraction represents a part of a whole. It has two parts:

  • Numerator (top number): How many parts you have.
  • Denominator (bottom number): How many equal parts the whole is divided into.

Example:
34\frac{3}{4}43​ means 3 parts out of 4 equal parts.

Basic Operations with Fractions

1. Adding Fractions

  • If denominators are the same , add the numerators and keep the denominator.

25+15=2+15=35\frac{2}{5}+\frac{1}{5}=\frac{2+1}{5}=\frac{3}{5}52​+51​=52+1​=53​

  • If denominators are different , find a common denominator (usually the least common multiple), convert fractions, then add.

13+14=412+312=712\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}31​+41​=124​+123​=127​

2. Subtracting Fractions

  • Similar to addition: make denominators the same, then subtract numerators.

56−16=46=23\frac{5}{6}-\frac{1}{6}=\frac{4}{6}=\frac{2}{3}65​−61​=64​=32​

3. Multiplying Fractions

  • Multiply the numerators and multiply the denominators.

23×45=2×43×5=815\frac{2}{3}\times \frac{4}{5}=\frac{2\times 4}{3\times 5}=\frac{8}{15}32​×54​=3×52×4​=158​

4. Dividing Fractions

  • Flip the second fraction (take the reciprocal) and multiply.

34÷25=34×52=158\frac{3}{4}\div \frac{2}{5}=\frac{3}{4}\times \frac{5}{2}=\frac{15}{8}43​÷52​=43​×25​=815​

Simplifying Fractions

  • Find the greatest common divisor (GCD) of numerator and denominator.
  • Divide both by the GCD.

Example:

812→GCD of 8 and 12 is 4\frac{8}{12}\rightarrow \text{GCD of 8 and 12 is 4}128​→GCD of 8 and 12 is 4

8÷412÷4=23\frac{8\div 4}{12\div 4}=\frac{2}{3}12÷48÷4​=32​

Converting Between Mixed Numbers and Improper Fractions

  • Mixed number to improper fraction :

213=2×3+13=732\frac{1}{3}=\frac{2\times 3+1}{3}=\frac{7}{3}231​=32×3+1​=37​

  • Improper fraction to mixed number :

73=213\frac{7}{3}=2\frac{1}{3}37​=231​

If you want, I can help with examples or practice problems! Just ask. 😊

Read Entire Article