To factor binomials, the approach depends on the type of binomial you have. Here are the common methods:
1. Factoring by Taking Out the Greatest Common Factor (GCF)
- Identify the greatest common factor of both terms.
- Factor out the GCF.
Example:
x2+4xx^2+4xx2+4x
GCF is xxx, so factor it out:
x(x+4)x(x+4)x(x+4)
2. Difference of Squares
- Applies when the binomial is a difference (subtraction) of two perfect squares.
- Use the formula:
a2−b2=(a+b)(a−b)a^2-b^2=(a+b)(a-b)a2−b2=(a+b)(a−b)
Example:
x2−16x^2-16x2−16
Rewrite as x2−42x^2-4^2x2−42, so
(x+4)(x−4)(x+4)(x-4)(x+4)(x−4)
3. Sum or Difference of Cubes
- For binomials like a3+b3a^3+b^3a3+b3 or a3−b3a^3-b^3a3−b3.
- Use formulas:
a3+b3=(a+b)(a2−ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)
a3−b3=(a−b)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
Example:
x3−8=(x−2)(x2+2x+4)x^3-8=(x-2)(x^2+2x+4)x3−8=(x−2)(x2+2x+4)
4. Factoring Binomials with a Common Factor in Polynomials
- Sometimes binomials appear as common factors in polynomials.
- Factor by grouping terms and extracting the binomial as a common factor.
Example:
8x3+56x2−3x−218x^3+56x^2-3x-218x3+56x2−3x−21
Group terms: (8x3+56x2)+(−3x−21)(8x^3+56x^2)+(-3x-21)(8x3+56x2)+(−3x−21)
Factor each group: 8x2(x+7)−3(x+7)8x^2(x+7)-3(x+7)8x2(x+7)−3(x+7)
Factor out common binomial: (x+7)(8x2−3)(x+7)(8x^2-3)(x+7)(8x2−3)
Summary of Key Formulas for Special Binomials
Type| Formula| Example
---|---|---
Difference of squares| a2−b2=(a+b)(a−b)a^2-b^2=(a+b)(a-b)a2−b2=(a+b)(a−b)|
x2−16=(x+4)(x−4)x^2-16=(x+4)(x-4)x2−16=(x+4)(x−4)
Sum of cubes|
a3+b3=(a+b)(a2−ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)|
x3+8=(x+2)(x2−2x+4)x^3+8=(x+2)(x^2-2x+4)x3+8=(x+2)(x2−2x+4)
Difference of cubes|
a3−b3=(a−b)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)|
x3−8=(x−2)(x2+2x+4)x^3-8=(x-2)(x^2+2x+4)x3−8=(x−2)(x2+2x+4)
Steps to Factor a Binomial
- Check if there is a greatest common factor (GCF) and factor it out.
- Identify if the binomial fits special patterns like difference of squares or cubes.
- Apply the appropriate formula.
- Factor further if possible.
This approach covers most binomial factoring cases efficiently