The path of a projectile is a parabola. This can be shown using the equations of motion under uniform acceleration (gravity). Consider a projectile launched with initial velocity uuu at an angle θ\theta θ with respect to the horizontal. The horizontal and vertical components of the initial velocity are:
ux=ucosθ,uy=usinθu_x=u\cos \theta,\quad u_y=u\sin \theta ux=ucosθ,uy=usinθ
The horizontal displacement at time ttt is:
x=uxt=ucosθ⋅tx=u_xt=u\cos \theta \cdot tx=uxt=ucosθ⋅t
The vertical displacement at time ttt is:
y=uyt−12gt2=usinθ⋅t−12gt2y=u_yt-\frac{1}{2}gt^2=u\sin \theta \cdot t-\frac{1}{2}gt^2y=uyt−21gt2=usinθ⋅t−21gt2
Solve the horizontal displacement equation for time ttt:
t=xucosθt=\frac{x}{u\cos \theta}t=ucosθx
Substitute this into the vertical displacement equation:
y=usinθ⋅xucosθ−12g(xucosθ)2y=u\sin \theta \cdot \frac{x}{u\cos \theta}-\frac{1}{2}g\left(\frac{x}{u\cos \theta}\right)^2y=usinθ⋅ucosθx−21g(ucosθx)2
Simplify:
y=xtanθ−g2u2cos2θx2y=x\tan \theta -\frac{g}{2u^2\cos^2\theta}x^2y=xtanθ−2u2cos2θgx2
This is an equation of the form:
y=Ax−Bx2y=Ax-Bx^2y=Ax−Bx2
where A=tanθA=\tan \theta A=tanθ and B=g2u2cos2θB=\frac{g}{2u^2\cos^2\theta}B=2u2cos2θg are constants. Since this is a quadratic equation in xxx, it represents a parabola. Hence, the path of the projectile is parabolic.
If more detailed derivations or examples are needed, they are also available in multiple sources.